If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25t^2-60t+18=0
a = 25; b = -60; c = +18;
Δ = b2-4ac
Δ = -602-4·25·18
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-30\sqrt{2}}{2*25}=\frac{60-30\sqrt{2}}{50} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+30\sqrt{2}}{2*25}=\frac{60+30\sqrt{2}}{50} $
| -0.07x+0.03(x+40000)=320 | | M4+2m2+1=0 | | 2x²+6x+4=24 | | 7x-14+5=5x-10+2x | | 6m-5(2m-1)=15 | | 56-7z/6=-z | | (y+3)(y+2)=2y+5y+6 | | 50+50-25x0+2+2= | | 3y+5/7=4y+3/7 | | 50+50-25x0+2+2=x | | 5=3y=-7 | | -1/2x+7=-2 | | 4n+-8.1=8.3 | | -6x-42+5=-37 | | 2x-7=-3x-32 | | -20x-5=7+14x | | 2n=4=10 | | 7x-14-1=2x-10+5x | | X=2y-8+5 | | 40-5z/4=-z | | 2(x-12)-(3)(x+12)=5x | | 5z+2/5=6z+1/5 | | 5t^2-20t+6=0 | | 6(50)-x=265 | | y/8=-8 | | 5-3=5-s | | x^+6x+3=0 | | 42x=4=24x=7 | | 5x+(-x)-1=41-2x | | 0.16x-4.5=0.67x | | 3=1a-6a+2 | | -3y=-13 |